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What can functional Transcranial Doppler Ultrasonography tell us about spoken
language understanding?
N. A. Badcock a,b and M. A. Groen c

aARC Centre of Excellence in Cognition and its Disorders, Department of Cognitive Science, Macquarie University, North Ryde, Australia;
bPerception and Action Research Centre, Macquarie University, North Ryde, Australia; cBehavioural Science Institute, Radboud University,
Nijmegen, The Netherlands

ABSTRACT
This review describes language research conducted using the neurophysiological imaging
technique, functional Transcranial Doppler Ultrasound (fTCD). FTCD estimates the blood flow
velocity in the cerebral arteries from which, neural activity is inferred. The review provides a brief
history and introduction to fTCD, including data acquisition, task design, and data processing.
Challenges and solutions for the use of fTCD for language research are covered, reporting on
production and comprehension paradigms, task difficulty and behavioural performance during
covert and overt speech production, and participant characteristics (age and sex). We note the
limited application of fTCD to the topic of spoken language understanding, commenting on the
value of examining lateralisation in this endeavour, as well as the advantages of its use, namely
portability and low cost, to supplement other imaging techniques.
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1. Historical background

Following the first reports of extracranial blood flow vel-
ocity (BFV) recordings using Doppler ultrasound (Miya-
zaki & Kato, 1965; Satomura & Kaneko, 1960), Aaslid,
Markwalder, and Nornes et al. (1982) pioneered its use
for intracranial blood vessels. They overcame the
attenuative qualities of bone and soft tissues by using
lower frequency ultrasound (1–2 MHz) and focusing on
(or “insonating”) vessels through the temporal bone
windows – the thinnest skull region (see Figure 1(A)). In
this way, BFVs were measured non-invasively in the
middle, anterior, and posterior cerebral arteries (Aaslid
et al., 1982), leading to widespread medical applications.
More recently, researchers began to time-lock this
activity to cognitive tasks – known as functional Tran-
scranial Doppler Ultrasonography (fTCD) – taking unilat-
eral (Droste, Harders, & Rastogi, 1989) and bilateral
measurements (Hartje, Ringelstein, Kistinger, Fabianek,
& Willmes, 1994; Rihs et al., 1995; Silvestrini, Cupini,
Matteis, Troisi, & Caltagirone, 1994) with a goal of asses-
sing cerebral lateralisation of cognitive abilities – rela-
tively greater task-related activation of one
hemisphere, compared to the other hemisphere.
However, these early fTCD results with verbal and non-
verbal tasks were ambiguous and lacked sufficient
reliability to draw conclusions on an individual basis.
Subsequent developments in experimental design (e.g.

Knecht et al., 1996) and analysis (Deppe, Knecht, Hen-
ningsen, & Ringelstein, 1997), notably improved the sen-
sitivity of fTCD and facilitated its use as a clinical and
research tool for studying lateralisation.

Clinically, fTCD is used in pre-surgical evaluations of
epilepsy patients (e.g. Knake et al., 2003), and in follow-
up measurements with a range of patient populations
(Knake et al., 2006), but studying language lateralisation
is also of theoretical importance. A lateralised brain is
thought to process information more efficiently (Rogers
& Vallortigara, 2015; Vallortigara & Rogers, 2005), but
associations are unclear in humans: atypical language
lateralisation has not been associated with behavioural
impairments in adults (Knecht et al., 2001). However,
fTCD (Bishop, Holt, Whitehouse, & Groen, 2014; Illingworth
& Bishop, 2009; Whitehouse & Bishop, 2009) and fMRI
(Badcock, Bishop, Hardiman, Barry, & Watkins, 2012; de
Guibert et al., 2011; Sun, Lee, & Kirby, 2010) research has
repeatedly reported weaker language lateralisation to be
more common in individuals with developmental
language and literacy impairments. Bishop (2013; Bishop
et al., 2014) discusses several possible explanations for
this conundrum, but currently, the evidence is indecisive.
Assessing language lateralisation directly (rather than
relying on a behavioural proxy), in large samples of indi-
viduals varying in language proficiency and across devel-
opment is needed to shed light on this issue, and fTCD is a
fitting technique in this endeavour.
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2. Overview of the method

2.1. The neurophysiology of fTCD

Via insonating a blood vessel through the temporal bone
windows of the skull (i.e. transcranially; see Figure 1), BFV
(cm/s) can be determined be comparing frequency
changes of the transmitted and returned ultrasound
signals reflected against the moving blood cells (i.e. the
well-known Doppler effect). As cerebral BFV increases
in response to neural firing in order to maintain
resources to the cells (Escartin & Rouach, 2013; Li &
Freeman, 2015; Villringer & Dirnagl, 1995), neural activity
in the brain regions supplied by the insonated vessel can
be inferred. The middle cerebral artery (MCA) is the most
commonly insonated vessel in language research, sup-
plying blood to approximately 50% of the cortex (van
der Zwan, Hillen, Tulleken, & Dujovny, 1993), including
areas linked to language processing (see Table 1). There-
fore, when someone produces speech, there will be an
accompanying increase in BFV in the MCA which can
be measured using fTCD. See Bishop, Badcock, and
Holt (2010) for a video demonstration of the procedure
and Figure 2 for its relation to other neurophysiological
methods.

2.2. Data acquisition

An experienced user can insonate vessels in less than 5
minutes but the location is variable and, as a result,
setup time can be longer (for a setup guide, including
depth of insonation, see Badcock, Spooner, et al.,
2016). One caveat to the fTCD procedure is that

insonation of a vessel may fail in 5–10% of people (in
the authors’ experiences and given in Lohmann, Ringel-
stein, & Knecht, 2006), 9% of children (0–16 years, Iova
et al., 2004), and up to 25% in older adults (i.e. 55-years
and over: M = 71; Bakker et al., 2004). Failure is due to
the thickness and density of the temporal bone
window, which tends to affect women (i.e. thicker) and
older adults (i.e. less density leads to greater signal
refraction) with higher likelihood (Wijnhoud, Franckena,
van der Lugt, Koudstaal, & Dippel, 2008); medication
also affects bone thickness (Kattan, 1970; Lefebvre,
Haining, & Labbé, 1972). Once setup, session duration
is task dependent, typically requiring between 30 and
60 seconds per trial. Although not systematically investi-
gated (but see Badcock, Spooner, et al., 2016, for
reliability at varying numbers of trials), typical studies
include 20 or more trials, lasting between 10 and
20 minutes.

2.3. Task design

With regard to language research, fTCD has mainly been
used to study lateralisation. Bilateral monitoring makes it
particularly suited to this purpose. To illustrate the key
variables, we focus on the gold standard language later-
alisation task in fTCD research: word generation. For this
task, participants are asked to silently generate words
beginning with a visually presented letter (see
Figure 3). This is preceded by a 5-seconds preparatory
period with a “Clear Mind” instruction. Words are gener-
ated for 15 seconds, followed by a 5-second period of
overt report to ascertain task compliance. A 35-second

Figure 1. Panel A: A cartoon diagram of the left temporal window, underlying middle cerebral artery (MCA), and region supplied by
MCA. Panel B: Example insonation of the left and right middle cerebral arteries, including the headmount with the probes fitted. Please
note this is for illustration purposes only. For photographs and diagrams of the variability of temporal windows see Ringelstein,
Kahlscheuer, Niggemeyer, and Otis (1990). There is also a free interactive simulator that provides clear diagrams (available for
Windows operating systems from Haemodynamics AG, http://www.transcranial.com/edu/download.html).
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period of relaxation follows to return BFV to a resting
state (i.e. normalisation): a baseline against which acti-
vation can be compared. Each trial lasts for 60 seconds.
The task, pioneered by Knecht et al. (1996), is reliable
(Knecht, Deppe, Ringelstein, et al., 1998), and has been
validated against the Wada technique (Knecht, Deppe,
Ebner, et al., 1998) and fMRI (Deppe et al., 2000;
Somers et al., 2011). These comparisons, as well as its
extensive use in the literature, set word generation as a
standard paradigm for fTCD research.

The required elements of fTCD paradigms include nor-
malisation/baseline, preparation, and activation. Normal-
isation should be included before and after an event to
ensure that activity is sufficiently separated from adjacent
events. However, normalisation duration varies between
studies. Gutierrez-Sigut, Payne, and MacSweeney (2015)
used a 10-second normalisation, whereas Badcock, Nye,
and Bishop (2012) used 25 seconds. Despite Gutierrez-
Sigut et al. and Badcock et al. reporting typical distri-
butions of lateralisation, the task reliability was low
(split-half r = 0.61 and Cronbach’s α = 0.52, respectively)
compared with canonical replications of word generation
(e.g. r = 0.89; Bishop, Watt, & Papadatou-Pastou, 2009).
Although likely that some minimum is required, this has
not been investigated. Alternative strategies to the
“relax” normalisation have been implemented, for
example, watching a to-be-described video (i.e. anima-
tion description; Bishop et al., 2009) which is more

engaging for children and reported to result in non-later-
alised activity. This may be useful for lateralisation
research but for other applications, especially with
adults, less engaging normalisation may be best.

Task preparation is cued by a brief tone usually
accompanied by “Clear Mind” text presented for 5
seconds. The presence of the tone has been demon-
strated to increase the magnitude of the change in BFV
in the predicted direction; that is, greater left velocity
for word generation (Knecht et al., 1996); though again,
the text instruction has not been investigated.

Activation is cued by the presentation of a letter to
which participants are instructed to silently generate
words. Silent generation of words was originally encour-
aged to avoid movement artefacts, however, overt tasks
have been successfully employed without issue (e.g.
Gutierrez-Sigut, Payne, et al., 2015). The early work
encouraged the production of four words per letter
(Knecht et al., 1996), later adjusted to “as many as you
can” (Knecht, Deppe, Ebner et al., 1998). Presumably
this extension results in greater activation consistency
between trials and therefore internal reliability, although
this has not been tested.

The duration of normalisation and activation periods
allows time for change in BFV to plateau (i.e. approxi-
mately 10 seconds; Rosengarten, Osthaus, & Kaps,
2002); however, the required time is derived from a para-
digm without a preparation period. As noted by Knecht

Table 1. Description of the cortical coverage and relevance for language (from Price, 2010) of brain regions supplied by the left middle
cerebral artery. The coverage is based upon examination of 50 hemispheres from 25 post-mortem brains, and the description is
minimally adapted from Gibo, Carver, Rhoton, Lenkey, and Mitchell (1981).

Lobe Coverage Gyrus
Brodmann

area Relevance for language

Frontal Lateral half of the orbital surface and the area between the
Sylvian fissure below, the superior frontal sulcus with
frequent overlap onto the superior frontal gyrus above,
and the central sulcus posteriorly and near, but stopping
short of the frontal tip anteriorly. The branches of the MCA
did not reach the superior margin nor the medial surface

Pars orbitalis 47 Semantic retrieval processes
Pars triangularis 45 Word selection

(comprehension and
production)

Pars opercularis 44 Hierarchical sequencing and
articulatory planning

Middle frontal 46 Word retrieval (more in
production)

Precentral 6, 4 Initiation and execution of
movement Sensorimotor
interface

Parietal Bounded anteriorly by the central sulcus, inferiorly by the
Sylvian fissure, and superiorly by the inferior half of the
superior parietal lobule. Posteriorly, the area extended
backward onto the lateral surface of the occipital lobe

Postcentral 3, 1, 2 Phonological retrieval/covert
articulation Semantic
constraints

Inferior and superior parietal
lobules (including the
supramarginal and angular gyri)

40, 39

Temporal Entire lateral surface except for a small posteroinferior strip.
In addition, it supplied the lateral part of the inferior
surface of the temporal lobe, the temporal pole, the uncus,
and adjacent part of the parahippocampal gyrus. Branches
frequently extended onto the lateral surface of the
occipital lobe

Superior temporal (including
Heschl’s gyrus and the Planum
Temporale)

41, 42, 22 Auditory input Prelexical
auditory objects
Sensorimotor integration

Middle temporal 21 Semantic processing of single
words

Inferior temporal 20 Amodal semantic combinations
Temporal pole 38 Intelligible speech/amodal

semantic combinations
Occipital Branches supplying the parietal and temporal lobes

overlapped onto the lateral occipital gyri, but they did not
extend to the occipital pole

Lateral occipital gyri 19
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et al. (1996), peak change following cuing occurs at
around 4 seconds. Shorter activation periods have
been used; for example, single word report in less
than 5 seconds to brief (3 to 5 word) definitions
(Badcock, Nye, et al., 2012). Although the lateralisation
results were comparable to word generation, the
relationship between the two tasks was weak. Further
investigation to determine optimal task parameters is
warranted.

It is worth noting that fTCD language research uses
blocked designs, in contrast to rapid event-related
designs used with fMRI (D’Esposito, Zarahn, & Aguirre,
1999) or EEG (i.e. event-related potentials; Luck, 2014).
Theoretically, rapid event-related fTCD designs are poss-
ible, however, to our knowledge, this has not been
tested.

2.4. Data processing and analysis

FTCD data are processed in a number of steps to calcu-
late event-related change in BFV (see Table 2 and
Deppe, Knecht, Lohmann, & Ringelstein, 2004; Deppe
et al., 1997, for further details). Example group data for
word generation are displayed in Figure 3. Critically,
the difference between the left and right velocities
shows an increase from 5 to 15 seconds, indicating left
lateralisation at the group level. Whilst the primary
purpose of the documented processing is for laterality
index calculation (see Table 2), the timing and amplitude
of left-right average, left and right independent (e.g. in a
vigilance experiment, Schultz, Matthews, Warm, & Wash-
burn, 2009), or single channel changes in velocity may
address new questions.

Figure 2. Schematic of the spatial resolution and temporal relationship between active (squares) and passive (ovals) neurophysiological
methods and physiological activity (Deppe, Ringelstein, & Knecht, 2004; Walsh & Cowey, 2000). Methods: transcranial direct current
stimulation (tDCS), transcranial magnetic stimulation (TMS), magnoencephalography (MEG), electroencephalography (EEG), positron
emission tomomography (PET), functional near infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), functional
Transcranial Doppler Ultrasound (fTCD).

Figure 3. Blood flow velocity (% change in cm/s) to silent word generation (a latency of 0 corresponds to letter presentation to cue
generation). Mean activity for a group (n = 17) are presented for the left and right middle cerebral arteries, and the left minus right
difference. Baseline and period of interest timings are marked, along with the peak difference (vertical bar within the period of interest).
A schematic of the task elements is displayed below the x-axis, including a period of relaxation to establish baseline blood flow velocity,
a preparatory cue to “Clear Mind”, a letter stimulus to cue silent word generation beginning with the presented letter, a period of silent
word generation, followed by overt report of the words (i.e. “Say”), and then relaxation to induce normalisation of blood flow velocity.
The laterality index is 2.07% change from baseline [95% confidence intervals: 1.99, 2.14].
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Deppe and colleagues developed the processing
steps, easily implemented with their software Average
(described in Deppe et al., 1997, 2004). Average is
Windows-based software, and a cross-platform
implementation of the methods is available with the
MATLAB toolbox, dopOSCCI (introduced in Badcock,
Holt, Holden, & Bishop, 2012). The toolbox allows for cus-
tomisation and extension to the steps, and introduced
activation correction for extreme values as well as rejec-
tion of extreme values based on the left minus right
difference (see Badcock, Spooner, et al., 2016).

At the individual level, changes in BFV have been ana-
lysed using comparison of indices to zero using 95% con-
fidence intervals (e.g. Groen, Whitehouse, Badcock, &
Bishop, 2013) and analyses of variance (e.g. Badcock,
Nye, et al., 2012).

3. Challenges and solutions for studying
spoken language

With the focus of fTCD language research on lateralisa-
tion and its potential use as a clinical tool in epilepsy
surgery, common language tasks for fTCD require the
production of words (e.g. word generation, naming) or
sentences (e.g. sentence construction, picture, or anima-
tion description). Although tasks vary in terms of the
amount of auditory input and comprehension

demands, few studies have investigated understanding
of spoken language per se. In the following sections,
we discuss existing use of receptive language tasks in
fTCD research, and how fTCD responses to language
tasks are associated with task difficulty and performance,
and participant characteristics.

3.1. Types of language tasks

Research has compared comprehension and language
production using listening to short stories (jokes,
poems, or everyday life events) versus producing short
stories from a picture cue (Stroobant, Van Boxstael, & Vin-
gerhoets, 2011), and sentence judgements versus word
generation (Buchinger et al., 2000). Consistent with
work using the Wada technique (e.g. Boatman et al.,
1998) and fMRI (e.g. Tzourio-Mazoyer, Josse, Crivello, &
Mazoyer, 2004), receptive tasks are less strongly latera-
lised than expressive tasks (Buchinger et al., 2000; Stroo-
bant et al., 2011). However, the expressive and receptive
tasks in this research were poorly matched for auditory
input or linguistic content, therefore lateralisation differ-
ences could be due to increased bilateral involvement in
multiple processes (e.g. phonological, syntactic, or
semantic knowledge). In a comparison of listening to
stories versus noise or melody, Carod Artal, Vazquez
Cabrera, and Horan (2004) reported a larger increase in

Table 2. Summary of processing and analysis steps for fTCD data (for further details see Deppe et al., 1997).
Step Description Comment

Downsampling Data are usually recorded at 100 Hz and downsampled to
25 Hz (1 sample every 40 ms)

Historically this step was required as computing power was limited,
in addition to the fact that the blood flow response is slow so
millisecond accuracy is overkill. Given the power of modern
computers, this step may be skipped, however, downsampling will
increase the speed of processing

Normalisation Data for each channel are transformed to have a mean of 100 The angle of the ultrasound probe will likely differ between left and
right channels, resulting in differences in overall velocity.
Normalisation corrects for this difference. This removes any intra-
individual differences as well resting state differences between
channels

Heart Cycle
Integration

Fluctuations in velocity due to the heart cycle (i.e. pulse) are
removed by averaging across individual cycles

This is a form a data cleaning that does not introduce artefacts
associated with bandpass filtering and improves the frequency
distribution of the data (from bimodal to unimodal), rendering it
suitable for traditional statistical interrogation. See Pinaya et al.
(2015) where this is not included and Badcock, Pascoe, and Groen
(2016) for a response to this

Epoching The continuous recording is divided into event-related time
periods

Data Screening Epochs with extreme values are excluded from further analysis Extreme data is considered a recording artefact, often due to probe
displacement caused by movement. This can be identified as a)
values beyond a certain range (e.g. ±50 cm/s beyond the mean of
the data) or b) a channel difference outside the expected range
(e.g. 20 cm/s where the average is usually less than 5 cm/s)

Baseline Correction Subtraction of average activity during a control period from all data
within an epoch, for the left and right channels separately

Requires the specification of a baseline time period within the epoch,
during which rest or control-task activity is assumed. The
percentage change in activation due to the task can be inferred.
Periods of 4 to 10 seconds have been used in the literature (10 in
Bishop et al., 2009; in Gutierrez-Sigut, Daws, et al., 2015) – the
effects have not been compared systematically

Laterality Index
Calculation

The peak left minus right channel activation difference within a
period of interest is determined. The average activation within a
2-second time-window around this peak is the laterality index

The period of interest is selected in relation to task-onset – typically
with a 5-second delay to allow velocity to peak. Left activation is
reflected by positive values, right is negative
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left lateralisation to stories. In this case, stimulus com-
plexity varied between conditions, complicating
interpretation of the results. Although most fTCD work
has investigated lateralisation for language as if
language were a unidimensional construct, Gutierrez-
Sigut, Daws, et al. (2015, 2015) compared the traditional
word generation task (i.e. phonological fluency) with a
semantic fluency equivalent and did not find differences
in direction or degree in lateralisation indices. In contrast,
Stroobant, Buijs, and Vingerhoets (2009) compared tasks
tapping multiple linguistic processes and found stronger
left lateralisation for tasks involving word generation
(phonological fluency) or syntactic processes (sentence
construction) than one involving semantic (synonimity)
judgements.

To date, fTCD has been used for relatively crude categ-
orisation in tasks with high ecological validity, but poor
on experimental control, and which mostly conceptual-
ise language as a unidimensional construct. To increase
our understanding of lateralisation of language – and
the utility of fTCD to study it – it is important to
address the following issues. Firstly, experimental
control over a range of factors (e.g. task difficulty) that
influence lateralisation is poor. Secondly, lateralisation
for language is predominantly treated as a unidimen-
sional construct, however, as illustrated by Stroobant
et al. (2009), degree of lateralisation can vary between
language tasks. It remains an outstanding question
whether a single laterality measure is suitable to sum-
marise activity across tasks, or whether individual vari-
ation between language tasks is meaningful. Carefully
matching task properties tapping different linguistic
domains and processes in both production and compre-
hension, and recognising individual differences between
these domains are important next steps.

3.2. Associations with task difficulty and
performance

Task difficulty is one parameter that might influence
fTCD-estimated lateralisation, but results have been
inconsistent. Dräger and Knecht (2002) manipulated
the difficultly of word generation by providing partici-
pants with letters forming the beginnings of words, con-
trasting the frequency of available items (i.e. high = easy,
versus low = hard). Although behavioural accuracy
matched retrieval difficulty, fTCD outcomes did not: con-
sistent with other fTCD work with language (Badcock,
Nye, et al., 2012) and spatial ability (Rosch, Bishop, &
Badcock, 2012). In an fMRI follow-up, Dräger et al.
(2004) suggested that lack of suitable cerebral territory
supplied by the MCA rendered fTCD insensitive to their
difficulty manipulation: parietal regions outside this

territory were highlighted. However, recently, pace of
decision-making was evident using fTCD. Payne, Gutier-
rez-Sigut, Subik, Woll, and MacSweeney (2015) manipu-
lated the number of word-pair rhyme and line
orientation judgments required in a 17.5-second
period: 5 or 10. More judgments were associated with
stronger lateralisation for rhyme (greater left) and line
(greater right) tasks. Therefore, fTCD is sensitive to
some aspects of task difficulty.

The behaviour-lateralisation relationship is important
for interpreting silent word generation tasks comparing
groups that may differ in language abilities (e.g. dyslexia,
Illingworth & Bishop, 2009). In such studies, it is imposs-
ible to establish whether the behavioural differences
underpin neural differences – this concern is supported
by a lack of relationship between the number of words
reported and fTCD measurements in word generation
(Badcock, Nye, et al., 2012). However, Gutierrez-Sigut,
Payne, et al. (2015) have demonstrated similar activation
for covert and overt speech, observing a significant cor-
relation between behaviour and fTCD lateralisation for
overt speech. Therefore, overt speech paradigms are
recommended.

3.3. Associations with participant characteristics

Lateralisation is also influenced by participant character-
istics, such as age, sex or, relatedly, menstrual cycle.
Regarding age, one fTCD study in children (1–5 years)
reported greater left lateralisation at younger ages
(Kohler et al., 2015); however, the majority (ages
ranging from 2 to 16) report no association (Groen,
Whitehouse, Badcock, & Bishop, 2012; Haag et al., 2010;
Hodgson, Hirst, & Hudson, 2016; Lohmann, Dräger,
Müller-Ehrenberg, Deppe, & Knecht, 2005; Stroobant
et al., 2011) which is at odds with fMRI (Gaillard et al.,
2000; Holland et al., 2001, 2007; Szaflarski, Schmithorst,
et al., 2006; Szaflarski, Holland, Schmithorst, & Byars,
2006). This discrepancy could be explained by greater
sensitivity in fMRI to area-specific age-related changes
or by the fTCD tasks used. As Holland et al. (2007)
suggested, assessing late-acquired language skills may
result in age-related differences in lateralisation, but
the fTCD tasks typically require description of simple pic-
tures or animation, probing early-acquired skills. At the
other end of the spectrum, older participants showed
reduced left-lateralised activation during a word gener-
ation task (60–75 year-olds, Keage et al., 2015).

Concerning sex,1 despite a long-standing debate on
male–female language lateralisation differences, empiri-
cal support for more bilateral language in women is
lacking (Sommer, Aleman, Bouma, & Kahn, 2004;
Sommer, Aleman, Somers, Boks, & Kahn, 2008), or
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effects are very small, and possibly age-dependent (Hirn-
stein, Westerhausen, Korsnes, & Hugdahl, 2013). This is in
line with a lack of sex differences reported in fTCD
studies (e.g. Knecht et al., 2000; Whitehouse & Bishop,
2009). Interestingly, a recent study evaluating the test–
retest reliability of lateralisation using fTCD across
several weeks, found laterality indices were much more
variable in women (Helmstaedter, Jockwitz, & Witt,
2015); specifically, a relative shift towards bilateral acti-
vation in women at menstrual cycle onset. This finding
demands consideration of menstrual cycle when asses-
sing lateralisation and it may explain contrasting findings
on sex differences, and confound existing between
group research. Therefore, both age and sex are impor-
tant factors in lateralisation research and may be impor-
tant for fTCD research per se.

4. Advantages and future directions

Language research with fTCD is in its infancy, predomi-
nantly applied in clinical settings, using ecologically valid,
but poorly controlled paradigms, probing multiple
aspects of language simultaneously. As such, there are
no key empirical contributions to the understanding of
spoken language yet. Nevertheless, fTCD is worth consider-
ation as the field is ripe for paradigm development and
refinements in analysis, including considering measures
beyond laterality indices. These developments enable
the advancements of our understanding of language later-
alisation for production and comprehension.

4.1. Advantages of fTCD

Although its spatial resolution is limited (see Figure 2 and
Table 1), fTCD has several advantages, compared to other
techniques. It is highly portable and relatively inexpen-
sive (Pelletier, Sauerwein, Lepore, Saint-Amour, & Las-
sonde, 2007), making it a useful screening tool for
investigations requiring large sample-sizes, such as
genetic studies (e.g. Somers et al., 2015). Additionally,
its robustness to articulation and gross movements,
and participant friendly administration, make it well
suited for use with young children, older adults, and
patient groups. Indeed, adaptations of the gold standard
word generation task eliciting overt sentence production
in response to pictures (Haag et al., 2010; Lohmann et al.,
2005) or animations (Bishop et al., 2009) or picture
naming (Badcock et al., 2016; Kohler et al., 2015) have
resulted in reliable measurements of language lateralisa-
tion. Moreover, the nature of the ultrasound signal
makes it appropriate for research where other tech-
niques are not, such as in individuals with cochlear
implants (e.g. Chilosi et al., 2014). As fTCD is non-invasive

and can be administered repeatedly in the same partici-
pants, there are opportunities to examine and project
recovery from stroke (for e.g. in motor control see
Sarkar, Ghosh, Ghosh, & Collier, 2007). The advantages
of fTCD – low-cost, portability, robustness to articulation
and gross movements, and participant friendly adminis-
tration – support its use as an imaging technique for
language research in the foreseeable future, supple-
menting weaknesses of other techniques.

4.2. Future developments in task design and data
analysis

As mentioned, there are a number of task parameters yet
to be optimised for fTCD. This concerns all phases of a trial:
normalisation, preparation, and activation (see Section
2.3). There are outstanding questions regarding the influ-
ence of task instruction on preparation and behaviour.
Also, the number of required trials and the possibility of
adopting a rapid event-related (instead of a blocked)
design, merit investigation. Refining matching of stimulus
properties across conditions to equate demands between
production and comprehension tasks is needed to inves-
tigate whether a unidimensional view of language latera-
lisation is justified. Regarding analysis, we are yet to
optimise data cleaning techniques to maximise the
signal to noise ratio (Badcock, Spooner, et al., 2016) and
variables beyond the peak difference should be con-
sidered (e.g. trajectory of BFV increase to infer neural sub-
trates; Meyer, Spray, Fairlie, & Uomini, 2014). Following a
different approach, resting TCD can be used to investigate
cerebrovascular functioning (Keage et al., 2012). This
approach has associated poorer cerebrovascular function-
ing to decreased fluid, but not crystallised, intelligence in
aging populations (Keage et al., 2015). These develop-
ments offer exciting potential for the use of fTCD for the
investigation of spoken language.

Note

1. Here, we refer to the dichotomous variable sex. We note
that the continuous variable of hormones levels will
likely be the more accurate advancement for this
research (e.g. Hausmann, Slabbekoorn, Van Goozen,
Cohen-Kettenis, & Güntürkün, 2000).
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