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a b s t r a c t

In the majority of people, functional differences are observed between the two cerebral hemispheres:
language production is typically subserved by the left hemisphere and visuospatial skills by the right
hemisphere. The development of this division of labour is not well understood and lateralisation of
visuospatial function has received little attention in children. In this study we devised a child-friendly ver-
sion of a paradigm to assess lateralisation of visuospatial memory using functional transcranial Doppler
ultrasound (fTCD). In a group of 24 adults we found this child-friendly version gave similar results to the
original version of the task. In addition, fourteen children aged 6–8 years successfully completed the child-
isuospatial
ight hemisphere
unctional transcranial Doppler
ltrasonography
hildren

friendly fTCD task, showing a negative lateralisation index, indicating right hemispheric specialisation
at the group level. Additionally, we assessed effects of task accuracy and reaction time on the lateralisa-
tion index. No effects were found, at the group level or at the level of single trials, in either the adult or
the child group. We conclude that this new task reliably assesses lateralisation of visuospatial memory
function in children as young as 6 years of age, using fTCD. As such, it holds promise for investigating
development of lateralisation of visuospatial function in typically and atypically developing children.

© 2011 Elsevier Ltd. Open access under CC BY license.
. Introduction

In the majority of people, functional differences are observed
etween the two cerebral hemispheres: language production is
ypically subserved predominantly by the left hemisphere and
isuospatial skills by the right hemisphere. Originally derived from
atient studies, this finding has been replicated using a variety of

maging techniques, including the Wada test and functional mag-
etic resonance imaging (Springer & Deutsch, 1993).

Little is known about why, how and when humans arrive at
his pattern of cerebral lateralisation. A better understanding of
he development of typical patterns of lateralisation of language
nd other cognitive functions is of both theoretical and practi-

al interest. Insight into the development of laterality patterns by
tudying typically developing children may add to our understand-
ng of the origins of this division of labour, as well as shedding
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light on mechanisms underpinning atypical lateralisation in clin-
ical groups. Deviations from the typical pattern of left and right
hemispheric specialisation for language and visuospatial function,
respectively, have been reported in individuals with early brain
injuries due to epilepsy (Helmstaedter, Kurthen, Linke, & Elger,
1997; Pataraia et al., 2004) or stroke (Stiles, Reilly, Paul, & Moses,
2005). A higher than normal rate of atypical hemispheric special-
ization for language function has also been reported in people with
a neurodevelopmental disorder such as dyslexia (Illingworth &
Bishop, 2009; Shaywitz et al., 2007; Temple, 2002), specific lan-
guage impairment (Bernal & Altman, 2003; Chiron et al., 1999;
Shafer, Schwartz, Morr, Kessler, & Kurtzberg, 2000; Tzourio, Heim,
Zilbovicius, Gerard, & Mazoyer, 1994; Whitehouse & Bishop, 2008),
developmental stuttering (Wood, Stump, McKeehan, Sheldon, &
Proctor, 1980), and Down syndrome (Bowler, Cufflin, & Kiernan,
1985; Elliott & Weeks, 1993; Hartley, 1981; Pipe, 1983).

At present, our knowledge of the development of the typical
pattern of functional lateralisation comes from studies employing
behavioural measures such as hand preference, visual half-field
techniques or dichotic listening (for a review, see Kinsbourne,

2009). These techniques show weak to moderate correlations with
cerebral lateralisation as determined by the Wada test (Bishop,
1990; Pelletier, Sauerwein, Lepore, Saint-Amour, & Lassonde, 2007)
and are less accurate in detecting right-hemisphere and bilat-
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The Circles paradigm was identical to the spatial memory
paradigm outlined in Whitehouse and Bishop (2008). In short,
each trial started with a cueing tone and a ‘clear mind’ message

1 Because the item “striking match” was considered inappropriate for children,
266 M.A. Groen et al. / Neurops

ral language representation (Channon, Schugens, Daum, & Poldey,
990; Kurthen, 1992). In the past 15 years, functional magnetic
esonance imaging (fMRI) has become more popular for use in
aediatric samples and has been used to address the issue of lat-
ralisation of language (Gaillard et al., 2000, 2003; Hertz-Pannier
t al., 1997; Holland et al., 2001, 2007; Szaflarski, Schmithorst, et al.,
006; Szaflarski, Holland, Schmithorst, & Byars, 2006; Wood et al.,
004) and visuospatial (Everts et al., 2009; Thomason et al., 2009)
unction in children. However, several drawbacks of using fMRI in
his context remain. First, due to drop-out rates as high as 40–50% at
oung ages (Byars et al., 2002; Holland et al., 2001) and the consid-
rable expense of scanning (Pelletier et al., 2007), sample sizes are
ften small, with a few notable exceptions (Holland et al., 2007;
zaflarski, Holland, et al., 2006). Furthermore, due to movement
estrictions language tasks are typically covert and often involve
onsiderable meta-linguistic skills.

In recent years functional transcranial Doppler ultrasonography
fTCD) has been shown to be a reliable, non-invasive and relatively
nexpensive methodology for determining cerebral lateralisation
Deppe, Ringelstein, & Knecht, 2004). Because fTCD is quick to set
p, is relatively insensitive to movement, and can be carried out

n a quiet and comfortable environment, the technique has great
otential for assessing cerebral lateralisation in children. Indeed,
hildren as young as 2 years of age have been found to be able to
omply with the procedure (Lohmann, Drager, Müller-Ehrenberg,
eppe, & Knecht, 2005).

Several groups have developed and evaluated tasks that probe
ateralisation for language suitable for children (Bishop, Watt, &
apadatou-Pastou, 2009; Haag et al., 2010; Lohmann et al., 2005;
troobant, Van Boxstael, & Vingerhoets, 2011). These involve either
he description of pictures or animations (expressive tasks), or
istening to stories (receptive task). Both types of tasks result in
ateralisation to the left hemisphere in the majority of cases, but
his is more pronounced for the expressive tasks (Stroobant et al.,
011). Test reliabilities for these tasks are reported as good to excel-

ent (Bishop et al., 2009; Haag et al., 2010; Lohmann et al., 2005;
troobant et al., 2011).

Lateralisation of visuo-spatial function in children has received
ess attention and has not, to the best of our knowledge, been inves-
igated in children using fTCD, and no suitable task for children
as been reported to date. In adults, tasks probing visuo-spatial
ttention (Flöel, Buyx, Breitenstein, Lohmann, & Knecht, 2005; Flöel
t al., 2001; Hartje, Ringelstein, Kistinger, Fabianek, & Willmes,
994; Lust, Geuze, Groothuis, & Bouma, 2011; Vingerhoets &
troobant, 1999) or visuospatial memory (Whitehouse, Badcock,
roen, & Bishop, 2009; Whitehouse & Bishop, 2009) have resulted

n greater right than left hemisphere activation as assessed with
TCD.

The aims of the current study were twofold. Firstly, to evaluate
he sensitivity of a fTCD paradigm for assessing cerebral lateralisa-
ion for visuospatial memory in children. To this end, we adapted a
isuospatial memory task that has resulted in clear right-lateralised
ctivation in adults (Whitehouse & Bishop, 2008) and which has
hown good reproducibility (Whitehouse et al., 2009). We com-
ared this new child-friendly version with the original version in
dults and also report on its use with a group of school-aged chil-
ren. Secondly, we investigated whether behavioural performance
ffected lateralisation scores. One possibility is that children are
ess lateralised than adults as a result of less proficient performance
n the task at hand. Additionally, given that reaction times show
onsiderable development during childhood and adolescence, the
ime-course of cognitive processes and associated lateralised acti-
ation may also differ. We assessed these issues by investigating
ssociations between task accuracy and reaction time and the size

nd direction of the laterality index both at the group level and at
he level of single trials.
gia 49 (2011) 3265–3271

2. Materials and methods

2.1. Participants

Adult participants (n = 24, 17 women, aged between 18–29
years, M = 22.25, SD = 3.32) were staff and students of Oxford Uni-
versity, all of whom were part of a larger sample recruited for
a previous study (Whitehouse & Bishop, 2009). In the previous
study participants were administered a spatial memory task along
with a word generation task that determines laterality for lan-
guage. Selected members of this sample were contacted again for
the current study, with a particular emphasis on recruiting those
individuals with atypical (i.e., left-hemisphere) lateralisation for
the spatial memory task, in order to provide an evaluation of the
full range of cerebral activation. Six further potential participants
were seen but did not produce enough useable trials in the Cir-
cles paradigm (3 cases) or the Rabbits paradigm (3 cases) due to
technical error (2 cases) or poor signal due to non-optimal probe
placement or failure to locate the temporal window (4 cases).

Child participants were 14 typically developing children (6 girls)
aged 6–8 years (M = 7.01 years, SD = 0.44 years), recruited from pri-
mary schools around Oxfordshire. Six further children were seen
but were excluded from the analyses because not enough useable
trials were recorded due to technical failure (1 case), failure to
comply with the task (1 case), or difficulty locating the temporal
window or non-optimal probe placement (4 cases).

Participants in both groups were healthy, without any history
of neurological disorder and with normal or corrected to normal
vision. Handedness was assessed with the Edinburgh Handedness
Inventory1 (Oldfield, 1971), with scores of 40 or above denot-
ing right-handedness, 40 or below denoting left-handedness, and
scores in between denoting ambidexterity. The sample included
15 right-handed (11 women), 8 left-handed (6 women) and 1
ambidextrous (men) adults and 9 right-handed (3 girls), 1 left-
handed (girl) and 4 ambidextrous (2 girls) children.

All adult participants gave written informed consent, whereas
parental consent and child assent were obtained for the 6–8-year-
old children. The project was approved by the Central University
Research Ethics Committee of the University of Oxford and is in
accordance with the WMA Declaration of Helsinki for experiments
involving humans.

2.2. Apparatus

Blood flow velocity through the left and right middle cere-
bral arteries (MCA) was measured with a Doppler ultrasonography
device (DWL Multidop T2: manufacturer, DWL Elektronische Sys-
teme, Singen, Germany). Participants were fitted with a flexible
head-set, which held in place a 2-MHz transducer probe over each
temporal skull window. The spatial memory paradigms were con-
trolled by Presentation Software (Neurobehavioral Systems) on a
Dell laptop computer, which sent markers to the fTCD to denote the
start of each epoch. Responses during the Rabbits paradigm were
given via a Microtouch touch screen (3M Touch Systems, Bracknell,
UK).

2.3. Stimuli
we replaced it for them with an item asking which hand they used to deal playing
cards.



ycholo

w
(
a
e
P
c
c
b
a
w
l
w
t
d
l
p
f
t

a
5
b
t
a
r
P
i
w
c
i
b
p
p
t
l
b
l
o
A
s
(
n
1
fi
w
t
m
o
p
t
b
w
t

2

p
t
h

2

(
l

summarizes the LIs and their latencies, as well as the t-value for
testing difference from zero. For both paradigms the LI was nega-
tive and significantly different from zero, indicating lateralisation
M.A. Groen et al. / Neurops

as displayed on the screen for an initial 5-s interval. Then white
n = 17) and red (n = 9) circles appeared on the screen, overlaid on

black background. The circles were distributed approximately
venly across the screen, but were not aligned in rows or columns.
articipants were instructed to memorize the location of the red
ircles, which were randomly located around the screen. The cir-
les remained on the screen for 5 s, and were then replaced by a
lank screen for 10 s. Following another cueing tone, the circle array
ppeared again. In half of the 20 trials, the location of the red (and
hite) circles was the same, while in the other half of the trials, the

ocation of one white and one red circle was swapped. Participants,
ho sat with their hands on the table in front of them, were asked

o decide whether the location of the red circles was the same or
ifferent as the initial screen, by raising the index finger on their

eft or right hand, respectively. This was followed by a 25 s rest
eriod. ‘Same’ and ‘different’ trials were in the same random order
or all participants. Participants were awarded one point for each
rial that they correctly identified as the ‘same’ or ‘different’.

In the Rabbits paradigm each trial started with a cueing tone and
‘clear mind’ message was displayed on the screen for an initial

-s interval. Then 20 black circles (‘the holes’) appeared on a green
ackground for the Rabbits paradigm used with adults. Similarly
o the circles in the Circles paradigm, the ‘holes’ were distributed
pproximately evenly across the screen, but were not aligned in
ows or columns. Six out of 20 holes had a white rabbit in them.
articipants were instructed to memorize which holes had a rabbit
n them. The holes and rabbits remained on the screen for 5 s, and

ere then replaced by a blank screen for 10 s. Following another
ueing tone, the holes re-appeared and the participant was asked to
ndicate which holes had had a rabbit in them in the previous screen
y touching those holes on a touch screen. The trial ended after the
articipant had touched 6 holes. This was followed by a 25 s rest
eriod. The locations of the holes were the same on all trials, while
he locations of the rabbits varied across trials. The same random
ocations were used for each participant. Participants completed 2
locks of 12 (adults) or 10 (children) trials responding with their

eft hand in one block and their right hand in the other block. Block
rder and response hand were counterbalanced across participants.
practice trial preceded the first block. After piloting the adult ver-

ion of the Rabbits paradigm with children, it was adapted so that:
1) The initial display of holes with rabbits in them was shown for 4,
ot 5 s; and (2) the following blank screen only remained for 6, not
0 s. Finally, the numbers of holes and rabbits was varied to create
ve levels of difficulty. The easiest level showed seven holes, two of
hich had a rabbit in them, the most difficult level was identical to

he one used with the adult participants (20 holes, 6 rabbits). Inter-
ediate levels had ten, thirteen, or seventeen holes, three, four,

r five of which had a rabbit in them, respectively. Children com-
leted a practice run prior to the experimental blocks in which 2
rials were presented at each difficulty level. For the experimental
locks the child was presented with the highest difficulty level at
hich he or she located all rabbits correctly on at least 1 of the 2

rials during the practice run.

.4. Procedure

Adult participants were tested in a quiet laboratory and com-
leted both paradigms in one session. Child participants were
ested in a quiet laboratory, a separate room in their school or at
ome and completed only the Rabbits paradigm.

.5. Data analysis
Data from each fTCD paradigm were analysed using dopOSCCI
Badcock, Holt, Holden, & Bishop, in preparation), which is a Mat-
ab script (Mathworks Inc., Sherborn, MA, USA) written by one of
gia 49 (2011) 3265–3271 3267

the authors (NB). The following steps were carried out: (1) the
blood flow envelope from each probe was downsampled to 25 Hz,
(2) heart beat activity was removed by determining local peaks in
the signal from the left probe and using the heart cycle integration
described by Deppe, Knecht, Henningsen, & Ringelstein, (1997), (3)
in order to control for global differences in recorded velocity, unre-
lated to the task, between the left and the right probe, blood flow
values were normalised to a mean of 100% on a trial-by-trial basis.
Time-locked epochs were then averaged, after rejecting epochs
with unusually high or low levels of activity (±30% of the aver-
age blood flow velocity in adults, ±40% in children), as a result of
non-optimal probe positioning or excessive movement. For both
groups and both paradigms, trials during which the participant
was not “on task” (e.g., not paying attention, talking during the
baseline) were also excluded from the analysis. Using these com-
bined criteria, about 90% of trials was retained (91 and 88% for
adults on the Circles and the Rabbits task, respectively; 92% for
children). All adult participants had at least 12 (out of 20) accepted
epochs on the Circles and 15 (out of 24) accepted epochs on the
Rabbits paradigm. Pilot work suggested that this results in a valid
indication of cerebral lateralisation for visuospatial memory with
these tasks. On average, more trials were included for the Rab-
bits (M = 21.08, SD = 1.44) than for the Circles paradigm (M = 18.17,
SD = 1.13; t(23) = −10.60, p < 001, r = .91) for adults. Children had
at least 14 (out of 20) accepted epochs on the Rabbits paradigm
(M = 18.43, SD = 1.95). The mean difference curve for left and right
channels was corrected to give a mean value of zero over a baseline
period of 10 s prior to the presentation of the stimulus.

A laterality index (LI) was calculated as the mean blood flow
velocity difference in a 2-s window centred on the peak difference
value during the period of interest. The period of interest was based
on previous work with the Circles paradigm (Whitehouse & Bishop,
2009) in combination with visual inspection and occurred during
the recognition/remembering phase for both paradigms (Adults:
Circles and Rabbits 22–37 s after the start of the trial; Children:
Rabbits 20–35 s). The LI latency refers to the time in seconds of the
peak left minus right difference, relative to trial onset. In addition
to the LI based on the average of all epochs for a participant, the
LI and its latency were also extracted for single trials. This enabled
us to evaluate effects of task performance and reaction time on the
LI on a single-trial basis. For the Rabbits paradigm, trials used to
calculate the LI were balanced in terms of response hand (i.e., the
same number of trials responded to with each hand were included).
A positive LI indicated greater left than right hemisphere activation,
with a negative index signifying the reverse. To assess reliability,
split-half reliabilities were calculated by computing the LI values
for odd and even epochs, and correlating these.

3. Results

3.1. Adults

3.1.1. Assessing lateralisation of visuospatial memory using a
child-friendly task

Mean difference curves (cerebral blood flow velocity change
in the left minus the right channel) for the Circles and the Rab-
bits paradigm are plotted in Fig. 1. The curves looked similar, as
was confirmed by the strong and statistically significant positive
intra-class correlation coefficient (ICC)2, r = .91, p < .001. Table 1
2 The ICC is conceptually similar to the Pearson correlation coefficient, but is
sensitive to the position, as well as the shape, of the two curves.
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Fig. 1. Mean difference waveforms for adult data on the Circles (black) and the
Rabbits (grey) paradigm. The time points where the stimulus appeared (Stimulus),
part of the stimulus reappeared and the response cue (Response cue) was given, and
the period of interest (POI) for calculation of the laterality index is also indicated.

Table 1
Mean laterality indices and their latencies, with t-value for testing difference from
zero for adult participants in the two paradigms. Split-half reliability is also included.

Circles Rabbits

N 24 24
LI

M −3.06 −2.87
SD 2.48 3.16

Range −8.72 to 2.18 −9.05 to 4.50
t −6.06** −4.45**

Split-half reliability .56* .63**

Latency
M 23.96 23.84
SD 0.48 0.57

t
s
p
a

p

F
b
l
i
l
(

* p < .05.
** p ≤ .001.

o the right hemisphere at the group level. Paired t-tests did not
how significant differences between the Circles and the Rabbits
aradigm with regard to the LIs (t(23) = 0.44, p = .663) or the latency

t which the LIs occurred (t(23) = 1.52, p = .144).

Fig. 2 shows a scatterplot of each participant’s LI for the two
aradigms. Visual inspection suggests a high-level of congruence

ig. 2. Scatterplot of adult laterality indices (LIs) for the Circles and the Rab-
its paradigm. Black dots represent individuals who showed right- (filled dots) or

eft- (open dots) lateralised activation on both paradigms. Grey triangles represent
ndividuals who showed right-lateralised activation on the Circles paradigm, but
eft-lateralised activation on the Rabbits paradigm (filled triangles) or vice versa
open triangle).
gia 49 (2011) 3265–3271

between the LIs for the two paradigms, as was confirmed by a signif-
icant positive Pearson’s correlation coefficient, r(24) = .75, p < 001.
As well as computing a LI, it is possible to categorise a partici-
pant as being left- or right-lateralised or show bilateral activation,
using the standard error of the LI across epochs to determine if
the 95% confidence interval of that individual’s LI overlaps with
zero. When considered in this manner, 87.5% of participants were
right-lateralised and 12.5% left-lateralised on the Circles paradigm.
On the Rabbits paradigm, 83.3% were right-lateralised and 16.7%
left-lateralised. Overlap between the categorisations based on the
two paradigms was high: twenty-one (87.5%) individuals were
in the same category for both paradigms (19 right-lateralised, 2
left-lateralised). The remaining individuals were categorised as
right-lateralised on the Circles paradigm, but as left-lateralised (2)
on the Rabbits paradigm or vice versa (1).

Table 2 summarizes accuracy (Circles and Rabbits paradigm) and
reaction time (Rabbits paradigm only) data. For the Circles and the
Rabbits paradigm, the average percent correct across trials (Avg) is
reported. For the Rabbits paradigm only, the percentage of trials on
which participants located all rabbits correctly (Trials all correct,
Tac) is also reported. Adult participants were highly accurate on
both paradigms. Although adults registered 92% correct responses
across all trials, they remembered all six locations on each trial
correctly on only ∼68% of trials on average, ranging from ∼29% to
95% of trials. This leaves some scope to examine the influence of
task performance on the LI.

3.1.2. The influence of task performance on the LI
First we looked at the time course of both the behavioural and

physiological responses. We found a statistical trend for partici-
pants who more often located all rabbits on a trial correctly to
take less time to respond, as indicated by a negative correlation
between Tac and Duration (r(24) = −.38, p = .064). When looking at
the single-trial level, we observed a similar relationship. Because
the single-trial data were skewed, non-parametric correlations
were inspected. On trials where a participant responded more accu-
rately, (i.e., a higher percentage of rabbits was located correctly), the
first response was faster (� = −.22, p < .001) and the total duration of
manual responses was shorter (� = −.32, p < .001). To assess a pos-
sible association between the time point at which the LI occurred
and the time point of the manual response on the single-trial level,
we looked for correlations between these variables for trials on
which all rabbits were located correctly (Tac = 100%, n = 373). No
significant correlations were observed.

Second, we assessed associations between task accuracy and the
direction and size of the LI. No differences in accuracy were found
between people who were right- or left-lateralised on the respec-
tive tasks (Circles: t(20) = 0.02, p = .984; Rabbits: Avg t(22) = 1.21,
p = .238, Tac t(22) = 1.62, p = .119). On the single-trial level for
people who showed right-lateralised activation, no significant dif-
ferences in the size of the LI were found at different accuracy levels
(H(2) = 2.05, p = .359; Fig. 3).

3.2. Children

3.2.1. Assessing lateralisation of visuospatial memory
The mean LI was −1.78 (SD = 2.02, range −5.78 to 1.64), which is

significantly different from zero on a t-test (t(13) = −3.30, p = .006),
indicating lateralisation to the right hemisphere at the group level.
The mean latency of the LI was 25.65 (SD = 3.87). The odd-even
split-half reliability was medium, r = .53, p = .05. When considered
categorically, 11 cases (78.6%) were right-lateralised and 3 cases

(21.4%) were left-lateralised.

Twelve children completed the Rabbits task at level 4 (13 holes,
4 rabbits), whereas the remaining 2 children completed level 5
(17 holes, 5 rabbits). Accuracy levels and reaction times across the
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Table 2
Mean accuracy and reaction time for adults and children. Avg = average across trials; Tac = trials all correct.

Adults Children

Circles Rabbits Rabbits

Accuracy
Avg (%)

M 88.41 92.33 85.23
SD 6.62 4.81 9.72
Range 70.00–95.00 79.86–99.31 67.00–100.00

Tac (%)
M 68.41 58.57
SD 16.48 24.61
Range 29.17–95.83 5.00–100.00

Reaction time
First

M 2109.58 2230.34
SD 934.43 348.39
Range 1254.50–5641.70 1702.60–3065.00

Duration
4.69
7.33
0.85–1
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M 639
SD 140
Range 452

roup as a whole are summarized in Table 2. Child participants were
ighly accurate on the Rabbits paradigm, registering 85% correct
esponses across all trials on average. However, they remembered
ll locations on a trial correctly on only ∼59% of trials on aver-
ge, ranging from ∼5% to 100% of trials. This leaves some scope to
xamine the influence of task performance on the LI.

.2.2. The influence of task performance on the LI
To assess the influence of task performance on the LI, we first

ooked at the timecourse of both the behavioural and physiologi-
al responses. We found that children who more often located all
abbits on a trial correctly, took less time to respond as indicated
y a significant negative correlation between Tac and Duration
r(14) = −.56, p = .037). When looking at the single-trial level, we
ound a similar relationship. Because the single-trial data were
kewed, non-parametric correlations were inspected. On trials
here a higher percentage of rabbits was located correctly, the
rst response was faster (� = −.15, p = .001) and the total duration of

anual responses was shorter (� = −.34, p < .001). To assess a pos-

ible association between the timepoint at which the LI occurred
nd the timepoint of the manual response on the single-trial level,
e looked for correlations between these variables for trials on

ig. 3. Single-trial data for the LI for individuals categorised as showing right-lateralised a
f rabbits correctly (left panel), or children located ≤50, 75 or 100% of rabbits correctly (ri
ean LI at a particular accuracy level. The number of trials included at a given accuracy le
6487.35
1069.49

0844.00 5216.65–8433.35

which all rabbits were located correctly (Tac = 100%, n = 142). No
significant correlations were observed.

Secondly, we assessed associations between task accuracy and
the direction and size of the LI. At the group level no differences
in accuracy were found between children who were catego-
rized as right- or left-lateralised (Avg t(12) = −0.65, p = .527, Tac
t(12) = −0.94, p = .365). On the single-trial level, for children who
showed right-lateralised activation, no significant differences in the
size of the LI were found at different accuracy levels (H(2) = 2.83,
p = .243; Fig. 3).

4. Discussion

Whitehouse and Bishop (2008) presented a task that has shown
good reproducibility in determining hemispheric specialisation for
visuospatial memory function using fTCD in adults (Whitehouse
et al., 2009). In the current study, we compared this task with a
child-friendly version and obtained highly similar results in adults.
The Circles and the Rabbits task resulted in highly similar activation

curves (Fig. 1), and LIs obtained by the two tasks for the same par-
ticipant were strongly associated (Fig. 2). Most adults (87.5%) ended
up in the same category (right-lateralised, left-lateralised) for both
paradigms. However, two participants showed right-lateralised

ctivation on the Rabbits task, across trials at which: adults located ≤67, 83 or 100%
ght panel). Each dot represents the LI on a single trial. Horizontal lines indicate the
vel are in parentheses.
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ctivation on the Circles task but left-lateralised activation on the
abbits task, and a third exhibited the reverse pattern. A similar
nding was observed in the study by Whitehouse et al. (2009), in
hich 2 of 30 participants (6.67%) had different patterns of lat-

ralisation on the Circles task at two different time points. These
iscrepancies may reflect participants’ lack of attention on one or
oth of the tasks, or the use of different cognitive strategies by
hese participants between tasks. It is also possible that, just as with
andedness, some people are able to perform the task competently
ith either hemisphere. Importantly, however, these participants
ere in the minority, with the Rabbits task successfully identifying

he correct pattern of visuospatial lateralisation with close to 90%
eliability.

Children successfully completed the fTCD procedure and most
ound the visuospatial memory task enjoyable. In 75% of children,
lean data on cerebral lateralisation of visuospatial memory func-
ion could be obtained. Similar to adults, we found a negative LI
n the children, indicating right hemispheric specialization at the
roup level. Split-half reliability was satisfactory and comparable
o that obtained in adults.

No effects of task performance on the direction or the size of
he LI were found, neither at the overall or single trial level, nor
ithin the adult or child groups. It appears that as long as the par-

icipant was ‘on task’ (trials during which this was not the case were
xcluded from the analysis), lateralised activation was observed in
oth adults and children. This finding is in accordance with recent
tudies in adults (Lust, Geuze, Groothuis, & Bouma, 2011; Lust,
euze, Groothuis, van der Zwan, et al., 2011) in which no rela-

ionship between task performance and cerebral lateralisation on a
patial task was found under single-task conditions. Given that both
hildren and adults achieved a high level of accuracy on the Rabbits
ask, it could also be that the limited variation in task performance
ampered the detection of such effects. Similarly, the timepoint
f the manual response as measured by the first response or the
uration of all responses, did not affect the latency of the LI on
he Rabbits paradigm. Possibly the blood flow velocity response is
oo sluggish to be sensitive to small changes in the timecourse of
ognitive processes.

In conclusion, this new task reliably assesses lateralisation of
isuospatial memory function in children as young as 6 years of age,
sing fTCD. Because of the quick, non-invasive and relatively low-
ost nature of fTCD, it holds promise to investigate development
f lateralisation of visuospatial function in typically and atypically
eveloping children.
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